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Recent crystallographic studies by Murphiasnair? and their
co-workers have led to major insights into the mechanism of copper
nitrite reductase (CuNIR), one of two bacterial enzymes (the other
being a heme nitrite reductase) that reduce nitrite to3NOlhe
key new result consists of high-resolution CuNIR crystal structures
with side-on NO coordination to the catalytically active type 2
copper, which is a unique structural motif in copper coordination
chemistry. Though rare, side-on NO coordination has been previ-
ously observed, for example, in the photoisomer dfRUNG}®
porphyrin, which has been characterized by low-temperature IR
spectroscopy.In the case of the CuNIR, a key unresolved issue
concerns the oxidation stat¢ CUNG}1° or { CUNGC}1—of this
intermediate, where the superscripts refer to the Enerfagkham
electron counts, namely, the number of metal d plus MO
electrons. We present here a DFT (PW91/TZP) study of side-on
NO coordination for type 2 Cu model complexes as
well as a reexaminatiénof Ru(P)(NO)CI (P= porphyrin, C,
S=08°

Side-on Ru(P)(NO)CI, which is about 1.23 eV higher in energy
than the end-on isoméeexhibits a quite unsymmetrical RUNO unit,
with markedly unequal RtNyo (2.0 A) and RuO (2.4 A) distances,
as shown in Figure 1. Figure 1 also shows the three primarily Ru
4d-based MOs. Note that while the HOMO-4 depicts the main
source of bonding between theRu d, orbital and the ‘ar* orbital
of the side-on NO, the HOMO-2 exhibits-bonding between the
Ru d' d, orbital andthe nitrogen enaf the & NO x* orbital. The
latter orbital interaction accounts for the unsymmetrical geometry
of the side-on RUNO unit.

To model the CuNIR side-on NO intermediate, we have used
the following supporting ligands: hydrotris(pyrazolyl)borate
(HBpz;~), hydrotris(4-imidazolyl)borate (HBigT), and tris(2-
imidazolyl)methane (HCig). Remarkably, not only do tHeCUNG} 10
species exhibit metastable side-on isomers but so dpGod&IC} 11
species, which is unprecedented for Enemdr&ltham counts other

Figure 1. Ru(P){?-NO)CI geometry (A, deg) and MOs.

1.9 A, Cu-0 2.1 A). The latter geometry seems to be more in

accord with experimental CuN/O distances reported for the

CuNIR intermediaté:? On a more detailed note, the calculated-Cu
N/O distances for th€ CuNG} 1! core are closer to those found in
ref 1 (2.0 A) than in ref 2 (2.2 A).

The MOs for analogou§CuNG}1° and { CUNC} ! complexes

are reasonably similar, although the formeSBis- 0 and the latter

S=1/,. For simplicity, Figure 3 shows an MO energy level diagram

than 61°or 10 For these three supporting ligands (in the above for Cu(HBims)(%NO), using aCs symmetry-constrained spin-

order), the energies of the side-on isomer, relative to the end-on
isomers, are 0.52, 0.47, and 0.60 eV {@uNGC}1°and 0.29, 0.23,
and —0.04 eV for{ CuNG}L. Thus, compared with side-on Ru-
(P)(NO)CI/ certain ones of the side-on CuNO isomers have
remarkably low energies, arnid one{CuNG ! case, the side-on
geometry is actually preferred! On the basis of these results,
therefore, the observed CuNIR intermediate may well be a ground
state (as opposed to a metastable) species.

Figure 2 depicts the optimized geometries for Cu(H3@zZ-
NO) and for [Cu(HBim)(72-NO)]%". Key features of the optimized

restricted calculation. (The more rigorous but larger spin-unrestricted

diagram conveys essentially the same information.) As in the case
of side-on Ru(P)(NO)CI, note from Figure 3 that the bonding

between Cu and the side-on NO ligand is mediated by @ul,)—
NO(z*) orbital interaction. For Cu(HBin)(7%-NO), note that the
Mulliken spin populations, the spin density plot (Figure 2), and a
plot of the singly occupied MO (Figure 3) all indicate that the
unpaired electron essentially occupies an NQz& orbital.

For the {Cu(@®?>NO)}1° species, a spin-unrestricted (broken

symmetry) calculation yields the same solution as a spin-restricted

geometry are in good agreement with a crystal structure of calculation, as opposed to an electronic structure involving metal

CU[HB(34Bu-pz)}](7'-NO).12"14 Figure 2 also shows that while the
{CuNO} 2 core is quite unsymmetrical (CtNyo 1.9 A, Cu-O
2.4 R), the{ CUNG} ! core is much more symmetrical (ENyo
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NO antiferromagnetic coupling. (However, we are aware that hybrid

functionals may result in a somewhat different electronic de-
scription, compared with what we have found here.) For the
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Figure 3. Energy level (eV) diagram for Cu(HBig(77>-NO).

more consistent with the observed metrical parameters for the
CuNIR intermediaté:2
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