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Recent crystallographic studies by Murphy1, Hasnain,2 and their
co-workers have led to major insights into the mechanism of copper
nitrite reductase (CuNIR), one of two bacterial enzymes (the other
being a heme nitrite reductase) that reduce nitrite to NO.3-5 The
key new result consists of high-resolution CuNIR crystal structures
with side-on NO coordination to the catalytically active type 2
copper, which is a unique structural motif in copper coordination
chemistry. Though rare, side-on NO coordination has been previ-
ously observed, for example, in the photoisomer of a{RuNO}6

porphyrin, which has been characterized by low-temperature IR
spectroscopy.6 In the case of the CuNIR, a key unresolved issue
concerns the oxidation states{CuNO}10 or {CuNO}11sof this
intermediate, where the superscripts refer to the Enemark-Feltham
electron counts, namely, the number of metal d plus NOπ*
electrons. We present here a DFT (PW91/TZP) study of side-on
NO coordination for type 2 Cu model complexes as
well as a reexamination7 of Ru(P)(NO)Cl (P) porphyrin, Cs,
S ) 0.8,9

Side-on Ru(P)(NO)Cl, which is about 1.23 eV higher in energy
than the end-on isomer,7 exhibits a quite unsymmetrical RuNO unit,
with markedly unequal Ru-NNO (2.0 Å) and RuO (2.4 Å) distances,
as shown in Figure 1. Figure 1 also shows the three primarily Ru
4d-based MOs. Note that while the HOMO-4 depicts the main
source of bonding between the a′ Ru dπ orbital and the a′ π* orbital
of the side-on NO, the HOMO-2 exhibitsπ-bonding between the
Ru a′′ dπ orbital andthe nitrogen endof the a′′ NO π* orbital. The
latter orbital interaction accounts for the unsymmetrical geometry
of the side-on RuNO unit.

To model the CuNIR side-on NO intermediate, we have used
the following supporting ligands: hydrotris(pyrazolyl)borate
(HBpz3

-), hydrotris(4-imidazolyl)borate (HBim3-), and tris(2-
imidazolyl)methane (HCim3). Remarkably, not only do the{CuNO}10

species exhibit metastable side-on isomers but so do the{CuNO}11

species, which is unprecedented for Enemark-Feltham counts other
than 65,10 or 10.11 For these three supporting ligands (in the above
order), the energies of the side-on isomer, relative to the end-on
isomers, are 0.52, 0.47, and 0.60 eV for{CuNO}10 and 0.29, 0.23,
and -0.04 eV for{CuNO}11. Thus, compared with side-on Ru-
(P)(NO)Cl,7 certain ones of the side-on CuNO isomers have
remarkably low energies, andin one{CuNO}11 case, the side-on
geometry is actually preferred! On the basis of these results,
therefore, the observed CuNIR intermediate may well be a ground
state (as opposed to a metastable) species.

Figure 2 depicts the optimized geometries for Cu(HBpz3)(η1-
NO) and for [Cu(HBim3)(η2-NO)]0,+. Key features of the optimized
geometry are in good agreement with a crystal structure of
Cu[HB(3-tBu-pz)3](η1-NO).12-14 Figure 2 also shows that while the
{CuNO}10 core is quite unsymmetrical (Cu-NNO 1.9 Å, Cu-O
2.4 Å), the{CuNO}11 core is much more symmetrical (Cu-NNO

1.9 Å, Cu-O 2.1 Å). The latter geometry seems to be more in
accord with experimental Cu-N/O distances reported for the
CuNIR intermediate.1,2 On a more detailed note, the calculated Cu-
N/O distances for the{CuNO}11 core are closer to those found in
ref 1 (2.0 Å) than in ref 2 (2.2 Å).

The MOs for analogous{CuNO}10 and {CuNO}11 complexes
are reasonably similar, although the former isS) 0 and the latter
S) 1/2. For simplicity, Figure 3 shows an MO energy level diagram
for Cu(HBim3)(η2-NO), using aCs symmetry-constrained spin-
restricted calculation. (The more rigorous but larger spin-unrestricted
diagram conveys essentially the same information.) As in the case
of side-on Ru(P)(NO)Cl, note from Figure 3 that the bonding
between Cu and the side-on NO ligand is mediated by an a′ Cu(dπ)-
NO(π*) orbital interaction. For Cu(HBim3)(η2-NO), note that the
Mulliken spin populations, the spin density plot (Figure 2), and a
plot of the singly occupied MO (Figure 3) all indicate that the
unpaired electron essentially occupies an NO a′′ π* orbital.

For the {Cu(η2-NO)}10 species, a spin-unrestricted (broken
symmetry) calculation yields the same solution as a spin-restricted
calculation, as opposed to an electronic structure involving metal-
NO antiferromagnetic coupling. (However, we are aware that hybrid
functionals may result in a somewhat different electronic de-
scription, compared with what we have found here.) For the

Figure 1. Ru(P)(η2-NO)Cl geometry (Å, deg) and MOs.
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{Cu(η2-NO)}11 species, the spin density profile described above
suggests an overall CuI-NO• electronic description, rather than a
tightly antiferromagnetically coupled CuII-NO- formulation. More-
over, the latter description would have resulted in a large deviation
of the calculated expectation value ofŜ2 from the theoretically
expected value of 0.75, which we do not observe; the calculated
value of<Ŝ2> is 0.76, in excellent agreement with the expected
value.

In summary, PW91/TZP calculations indicate that both{CuNO}10

and{CuNO}11 species may exhibit metastable side-on NO linkage
isomers. However, the side-on isomers seem to be especially
favored for the reducedS ) 1/2 {CuNO}11 oxidation level, where
in one case, we found the side-on form to be actually more stable
than the end-on form (albeit by a small margin). Indeed, it should
be a worthwhile goal for synthetic inorganic chemists to attempt
the synthesis of side-on{CuNO}11 species. Moreover, the relatively
symmetrical structure of the side-on{CuNO}11 unit seems to be

more consistent with the observed metrical parameters for the
CuNIR intermediate.1,2
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Figure 2. Distances (Å, blue), angles (deg, green), spin populations (red),
and spin density plots (green).

Figure 3. Energy level (eV) diagram for Cu(HBim3)(η2-NO).
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